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Abstract Analytical solutions of the Schrodinger equation are obtained for some
diatomic molecular potentials with any angular momentum. The energy eigenvalues
and wave functions are calculated exactly. The asymptotic form of the equation is also
considered. Algebraic method is used in the calculations.
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1 Introduction

Diatomic molecular potential are very important to describe the intramolecular and
intermolecular interactions and atomic pair correlations in quantum mechanics. Ana-
lytical solutions of the Schrodinger equation (SE) with any angular momentum pro-
vides important applications in many fields of physics and chemistry for checking
and improving models developed to study quantum mechanical systems and also
for improvement of the numerical methods. One can have exact solutions for cer-
tain potentials. So far, some useful analytical methods have been developed, such as
supersymmetry (SUSY) [1,2], Nikiforov–Uvarov method (NU) [3,4], Pekeris approx-
imation [5], asymptotic iteration method (AIM) [6–8], variational [9], hyperviria per-
turbation [10], shifted 1/Nexpansion (SE) and the modified shifted 1/N expansion
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(MSE) [11], exact quantization rule (EQR) [12], perturbative formalism [13–15], poly-
nomial solution [16,17], wave function ansatz method [18,19], group theory [20,21]
and path integral [22–25] to solve the radial Schrödinger equation exactly

In this work we find analytical solutions of SE for a class of diatomic potentials
with any angular momentum. For these potentials SE can be transformed into a second
order differential equation of a certain parametric form. We use algebraic method for
the possible solutions. We apply our formulation to several important diatomic poten-
tials and obtain the energy eigenvalues and the corresponding eigenfunctions. These
diatomic potentials include: Generalized Morse Potential [26–28], Mie potential [29–
36], Kratzer–Fues Potential [37,38], Coulomb Potential, Pseudoharmonic potential
[39,40], Noncentral potential [41–47], Deformed Rosen–Morse Potential [48–53],
Generalized Woods–Saxon potential [54–60], Pöschl–Teller potential [61–66].

This paper is organized as follows. In Sect. 2 the formulation is introduced. In
Sect. 3, Solution of some potentials are presented. Finally, concluding remarks are
given in Sect. 4.

2 Formulation of the approach

For many potentials the SE can be transformed into the following second order para-
metric differential equation.

d2ψ

ds2 + (c1 + c2s)

s(1 + c3s)

dψ

ds
+ 1

s2(1 + c3s)2
[−�1s2 +�2s −�3]ψ = 0 (1)

where ci and�i are some constants. First we look at the asymptotic form of this equa-
tion when s becomes very large. We found that depending on the constant c3 there
are two possibilities. When c3 is a nonzero constant the last term vanishes faster than
the others and it is neglected in the asymptotic equation. If c3 is zero the last term
will be present in the asymptotic form. Let us start with a nonzero c3. In this case an
asymptotic analysis of Eq. (1) suggests to consider solution of the following form

�(s) = (1 + c3s)−psq y(s) (2)

where p and q are some arbitrary constants and y is a new function to be determined.
When we insert this into Eq. (1) we obtain the following differential equation for y

s(1 + c3s)
d2 y(s)

ds2 + A(s)
dy

ds
+ B(s)y(s) = 0 (3)

where

A(s) = 2q(1 + c3s)− 2pc3s + c1 + c2s,

B(s) = q(q − 1)
(1 + c3s)

s
− 2pqcs + p(p + 1)c2

3

(1 + c3s)
s

+ (c1 + c2s)

s(1 + c3s)
[q + (q − p)c3s] + (−�1s2 +�2s −�3)

s(1 + c3s)
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It is convenient to define a new variable z = 1 + 2c3s and write Eq. (3) in terms of
this variable. Under this transformation we obtain

(1 − z2)2
d2 y

dz2 + (1 − z2)[β − α + (α + β + 2)z]dy

dz
+ R(z)y = 0 (4a)

where

α = 2q + c1 − 1, β = −2p-c1 + c2

c3
− 1, R(z) = r1z2 + r2z + r3. (4b)

The coefficients of the polynomial R are defined as

r1 = q(q − 1)− 2pq + p(p + 1)+ c2

c3
(q − p)− �1

c2
3

, (5a)

r2 = 2q(q − 1)− 2p(p + 1)+ 2c1(q − p)+ 2
c2

c3
p + 2

�1

c2
3

+ 2
�2

c3
, (5b)

r3 = q(q − 1)+ 2pq + p(p + 1)+ 2c1(q + p)− c2

c3
(q + p)− �1

c2
3

− 2
�2

c3
− 4�3. (5c)

In the “Appendix” we simplify Eq. (4a) by arguing that the coefficients of the polyno-
mial R must satisfy r2 = 0 and r1 = −r3. In the definitions of these parameters there
are two arbitrary constants p and q. So with proper choices of these constants one can
satisfy these conditions. Let us do this. We start with the condition r1 + r2 + r3 = 0
and calculate this sum using Eq. (5). We find the following quadratic equation

q2 − (1 − c1)q −�3 = 0 (6)

and its roots are

q0 =
(

1 − c1

2

)
±

√(
1 − c1

2

)2

+�3. (7)

This fixes the arbitrary constant q in terms of the parameters of the equation. Simi-
larly the condition that r2 must vanish leads to a quadratic equation for p which can
be written as

p2 − Dp − H = 0 (8)

and the roots are

p0 = D

2
±

√(
D

2

)2

+ H (9)

where

D = c2

c3
− c1 − 1, H = �1

c2
3

+ �2

c3
+�3. (10)
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This gives the second arbitrary constant p in the wave function. Inserting r1 = −r3 in
Eq. (4a) we get R(z) = r3(1 − z2) and thus Eq. (4a) becomes

(1 − z2)
d2 y

dz2 + [β − α + (α + β + 2)z]dy

dz
+ r3 y = 0. (11)

In the “Appendix”, we use the polynomial method for the solution of this differential
equation and we find that for an acceptable solution r3 must satisfy the condition
r3 = n(n +α+β+ 1) where n is a positive integer. When we insert this into Eq. (10)
it becomes the well known Jacobi’s differential equation

(1 − z2)
d2 y

dz2 + [β − α + (α + β + 2)z]dy

dz
+ n(n + α + β + 1)y = 0 (12)

and its solution are the Jacobi polynomials Pα,βn (z). Thus the wave functions are deter-
mined in terms of these polynomials. The condition on r3 is obviously a quantization
condition. First using Eq. (5c) we express r3 in terms of the determined parameters.
For this, we solve Eq. (6) for �3 in terms of q0 and c1 then we use Eqs. (8), (10)
and obtain �2 in terms of p0, D, �1 and �3. When we insert these into Eq. (5c) the
relation r3 = n(n + α + β + 1) takes the following form

(q0 − p0)
2 +

(
c2

c3
+ 2n − 1

)
(q0 − p0)+ n

(
n + c2

c3
− 1

)
= �1

c2
3

(13)

where α and β are also expressed in terms of q0 and p0 by means of Eq. (4b). This
equation gives the energy levels in our formulation.

The second alternative was to have c3 = 0 in Eq. (1). For these problems Eq. (1)
becomes

d2ψ

ds2 = (c1 + c2s)

s

dψ

ds
+ 1

s2 (−�1s2 +�2s −�3)ψ = 0. (14)

An asymptotic analysis of this equation suggests a solution of the following form

ψ(s) = exp(−p1s)sq1 y1(s) (15)

where p1 and q1 are some arbitrary constants and y1 is a function of s. Here we have
again taken sq1 y1 instead of y1. Thus an expansion of y1 will start with a constant
term. When we insert Eqs. (15) into (14) we get the following differential equation

d2 y1

ds2 +
[

2
q1

s
− 2p1 + (c1 + c2s)

s

]
dy1

ds
+

[
q1(q1 − 1)

s2 − 2
q1 p1

s
+ p2

1

+ (c1 + c2s)

s
(
q1

s
− p1)+ (−�1s2 +�2s −�3)

]
y1 = 0 (16)
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As before we define a new variable z = (2p1 − c2)s and write Eq. (16) in terms of
this new variable. We obtain

z2 d2 y1

dz2 + (k + 1 − z)z
dy1

dz
+ A1(z)y1 = 0 (17)

where

k = c1 + 2q1 − 1 (18)

A(z) = (p2
1 − c2 p1 −�1)

(c2 − 2p1)2
z2 + (2q1 p1 − c2q1 + c1 p1 −�2)

(c2 − 2p1)
z

+(q1(q1 − 1)+ c1q1 −�3) = γ1z2 + γ2z + γ3 (19)

Here γ1,γ2 and γ3 are defined by the coefficients of z2, z1 and z0 respectively. When
we consider Eq. (18) at z = 0 we conclude that γ3 must be zero. Remember that y1 is
not zero at the origin. Using the definition of γ3 we get the following equation

q1(q1 − 1)+ c1q1 −�3 = 0. (20)

We choose the root

q10 = (1 − c1)

2
+

√(
1 − c1

2

)2

+�3 (21)

as the arbitrary constant q1 in Eq. (15). In the “Appendix”, we discuss the polyno-
mial method for the solutions of Eq. (18). We show that acceptable solutions can be
obtained if we chose γ1 = 0 and γ2 = n where n is a positive integer. The condition
γ1 = 0 gives a quadratic equation

p2
1 − c2 p1 −�1 = 0 (22)

and we take

p10 = c2

2
+

√(c2

2

)2 +�1 (23)

as the second constant p1 in Eq. (15). The condition γ2 = n leads to the following
equation

c1 p10 − q10(c2 − 2p10)−�2 = n(c2 − 2p10). (24)

This equation gives the energy spectrum for the systems whose wave functions satisfy
Eq. (13). The corresponding wave functions can be obtained from Eq. (18). When we
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insert the values of the parameters γi into Eq. (18) we get

z
d2 y1

dz2 + (k + 1 − z)
dy1

dz
+ ny1 = 0. (25)

This is the well known Laguerre’s associated differential equation its solutions are the
associated Laguerre polynomials Lk

n(z). Thus the wave function can be written down
using Eq. (1) as

ψ(s) = exp(−p10s)sq10 Lk
n([2p10 − c2)s]). (26)

In the following section we apply these results for several examples.

3 Applications

(A) c3 = 0 cases.

Case 1: Generalized Morse Potential

We take the Generalized Morse Potential [26–28] as

V (x) = V1 exp(−2ax)− V2 exp(−ax) (27)

and define s = √
V1 exp(−ax) to transform the SE to the following form

d2ψ

ds2 + 1

s

dψ

ds
+ 1

s2 [−�1s2 +�2s +�3]ψ = 0 (28)

where

�1 = − 2m

h̄2a2
, �2 = 2m

h̄2a2

V 2√
V1
, �3 = 4ε2, ε2 = − m E

2h̄2a2
. (29)

Using Eqs. (1), (18), (20), and (22) we calculate the parameters as

c1 = 1, c2 = 0, c3 = 0, q01 = √
�3, p10 = √

�1, k = 2
√
�3. (30)

Thus the energy spectrum calculated from Eq. (24) is

En = −2a2h̄2

8m

(
2n + 1 −

√
2mV2

h̄a
√

V1

)2

(31)

and the corresponding wave functions are

ψ = s2ε exp

(
−

√
2m

h̄a
s

)
L4ε

n

(
2

√
2m

h̄a
s

)
. (32)
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Case 2: Mie Potential

The Mie potential is given by [29–36]

V (r) = V0

[
1

2

(a

r

)2 − a

r

]
. (33)

Using the notation s = r one can write the radial SE as

d2 R

ds2 + 2

s

d R

ds
+ (−�1s2 +�2s −�3)

s2 R = 0 (34)

where

�1 = −2m E

h̄2 , �2 = 2maV0

h̄2 , �3 = 2m

h̄2

[
a2V0

2
+ h̄2	(	+ 1)

2m

]
. (35)

Comparing Eqs. (34) and (1) we find c1 = 2, c2 = 0, c3 = 0 and using these with
Eqs. (17) and (23) we determine q10 and p10 as

q10 = 1

2
(−1 + √

1 + 4�3), p10 = √
�1. (36)

When we insert these into Eq. (24) we get the following energy eigenvalues

√
�1(2n + 1 + √

1 + 4�3) = �2 (37)

or writing �1 explicitly we get

En = − h̄2

2m
�2

2[2n + 1 + √
1 + 4�3]−2. (38)

The corresponding wave functions can be written down from Eq. (26) as

ψ = s
1
2 (−1+√

1+4�3) exp(−iεs)L
√

1+4�3−1)
n (2iεs) (39)

where

ε2 = 2m E

h̄2 . (40)

Case 3: Kratzer–Fues Potential

The Kratzer–Fues Potential [37,38] is given is by

V (r) = De

(
r − re

r

)2

(41)
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and the radial SE with this potential can be written as

d2 Rnl

dr2 + 2

r

d Rnl

dr
+ 1

r2

(
2m

h̄2

) [
(Enl − De) r2 + 2Derer −

(
Der2

e + h̄2	(	+ 1)

2m

)]
Rnl =0. (42)

By defining s = r this equation can be expressed as

d2 Rnl

ds2 + 2

s

d Rnl

ds
+ 1

s2 [−�1s2 +�2s −�3]Rnl = 0 (43)

where

�1 = 2m

h̄2 (De − Enl) = −ε2
nl , �2 = 4m Dere

h̄2 , �3 = 2m

h̄2

[
Der2

e + h̄2	(	+ 1)

2m

]
. (44)

The parameters are obtained by using Eqs. (1), (18), (21), and (23) as follows c1 =
2, c2 = 0, c3 = 0, q10 = (1/2)(1 + √

1 + 4�3), p10 = √
�1. Using these in Eq.

(24) we get the energy spectrum

εnl = − �2
2

[2n + 1 + √
1 + 4�2]2

. (45)

Equation (26) gives the following formula for the wave functions

Rnl = Aν
1
2 (1+√

1+�3) exp(−ν/2)Lk
n(ν) (46)

where k = 2 + √
1 + 4�3 and ν = 2iεs

Case 4: Coulomb Potential

We take V (r) = −e2/r for this potential and write the radial part of the SE as

d2 R

dr2 + 2

r

d R

dr
+ 1

r2 [−�1r2 +�2r −�3)]R = 0 (47)

where

�1 = −2m E

h̄2 , �2 = 2me2

h̄2 , �3 = 	(	+ 1). (48)

The following parameters are obtained by using Eqs. (1), (18), (21), and (23)

c1 = 2, c2 = 0, c3 = 0, q10 = 1

2
(−1 + √

1 + 4�3) = 	, (49)

and

p10 = √
�1 =

√
2mw

h̄2 , w = −E, k = 2	+ 1 (50)
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Hence we can write the energy eigenvalues and the wave functions as

En	 = − me4

2h̄2n2
0

, Rn	 = Cρ	 exp(−ρ)L2	+1
n0−	−1(2ρ) (51)

where C is a constant, ρ = (
√

2mw/h̄2)r , and n0 is the principal quantum number
n0 = n − 	− 1

Case 5: Pseudoharmonic Potential

Pseudoharmonic potential [39,40] is given by

V (r) = V0

(
r

r0
− r0

r

)2

(52)

and using s = r2 the radial part of the SE takes the form

d2 R

ds2 + 3/2

s

d R

ds
+ 1

s2

[
−�1s2 +�2s −�3

]
R = 0 (53)

where

�1 = mV0

2h̄2 , �2 = m

2h̄2 (E + V0), �3 = mV0r2
0

2h̄2 + 	(	+ 1)

4
. (54)

From Eqs. (1), (21), (23), and (26) we obtain

c1 = 2

3
, c2 = 0, c3 =0, q10 = −1

4
+

√
1

16
+�3, p10 =√

�1, k =2

√
1

16
+�3.

(55)

Thus the energy levels and the corresponding wave functions are

ε=
[

2n + 1 + 2

√
1

16
+ β

]
α, ψ=s

−1
4 +

√
1
16 +β exp(−αs)L

2
√

1
16 +β

n (2αs) (56)

where

ε = �2, α2 = �1, β = �3. (57)

Case 6: The Noncentral Potential

The noncetral potential [41–47] is given as

V (r, θ) = α

r
+ β

r2 sin2(θ)
+ γ

cos(θ)

r2 sin2(θ)
(58)
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The radial part of the SE takes the following form

d2 R

dr2 + 2

r

d R

dr
+ 2m

r2

[
2m E

h̄2 r2 − 2mα

h̄2 r − 2mλ

h̄2

]
R = 0 (59)

where λ is a constant. When we define a variable s as s = r this equation becomes

d2 R

ds2 + 2

s

d R

ds
+ 2m

s2

[
−�1s2 +�2s −�3

]
R = 0 (60)

where

�1 = −2m E

h̄2 = −ε2, �2 = −2mα

h̄2 , �3 = 2mλ

h̄2 , λ = h̄2	(	+ 1)

2m
(61)

We use Eqs.(1), (18), (21), (23), and (26) and obtain

c1 =2, c2 =0, c3 =0, q10 = −1

2
+

√
1

4
+�3, p10 =√

�1, k =2

√
1

16
+�3.

(62)

The energy eigenvalues are

En = −2m

h̄2

α2

[2n + 1 + √
1 + 4�3]2

= −2m

h̄2

α2

4[n + 	+ 1]2 (63)

And the corresponding wave functions are

ψn	 = r	 exp(−εr)L2	+1
n (2εr) (64)

(B) nonzero c3 cases.

Case 7: Deformed Rosen–Morse Potential

The Deformed Rosen–Morse Potential [48–53] has the following form

V (x) = V1

[1 + η exp(−2ax)] − V2η exp(−2ax)

[1 + η exp(2ax)]2 . (65)

The SE becomes

d2ψ

ds2 + (1 − ηs)

s(1 − ηs)

dψ

ds
+ 1

[s(1 − ηs)]2

[
−�1s2 +�2s −�3

]
ψ = 0 (66)

where

�1 = εη2, �2 = 2εη + κη − γ, �3 = ε + κ. (67)

ε = − m E

2h̄2α2
, κ = mV1

2h̄2α2
, γ = mV2η

2h̄2α2
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Using Eqs. (1), (4b), (2), (7), and (9) we obtain the following parameters

c1 =1, c2 =−η, c3 = −η, q0 =√
�3 =√

ε + κ, p0 = −1

2

(
1 +

√
1 + 4

γ

η

)
(68)

and

α = 2
√
ε + β, β =

√
1 + 4

γ

η
. (69)

Let us define x = (p0 − q0) and insert the values of ci into Eq. (13) it becomes
x2 − 2nx + n2 − ε = 0. We use the solution x = n +√

ε and write p0 −q0 = n +√
ε

as

n + √
ε = −1

2

(
1 +

√
1 + 4

γ

η

)
− √

ε + κ = 0. (70)

Solving this equation for ε we obtain

ε − κ

2
+ 1

16

[
2n + 1 +

√
1 + 4

γ

η

]
+

⎡
⎣ κ

2n + 1 +
√

1 + 4 γ
η

⎤
⎦

2

(71)

and for the corresponding wave functions are

ψ = (1 − qs)
1
2

(
1+

√
1+4 γ

η

)
s
√
ε+κ P

(
2
√
ε+κ,

√
1+4 γ

η

)
n (1 − 2qs). (72)

Case 8: Woods–Saxon Potential

The Generalized Woods–Saxon potential [54–60] is

V (x) = −V1

1 + exp(ax)
− V2

exp(ax)

[1 + exp(ax)]2 (73)

and defining s = 1/[1 + exp(ax)] the SE can be written as

d2ψ

ds2 + 1 − 2s

s(1 − s)

dψ

ds
+ 1

[s(1 − s)]2

[
−�1s2 +�2s −�3

]
ψ = 0 (74)

where

�1 = 2ma2V2

h̄2 , �2 = 2ma2

h̄2 (V2 + V1), �3 = −2ma2 E

h̄2 . (75)

Thus the parameters of Eq. (1) are c1 = 1, c2 = −2, c3 = −1. We calculate q0, p0
by means of Eqs. (7) and (9) and find

q0 = √
ε, p0 = √

ε − a (76)
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where we ε is used instead of �3. The energy levels are obtained with Eq.(13) as

x2 + (2n + 1)x + n(n + 1)−�1 = 0 (77)

where x = √
ε − √

ε − a. The solution of this quadratic equation gives

x = (1/2)[−(2n + 1)+ √
1 + 4γ (78)

where we have used γ instead of �1. Solving Eq. (40) for ε we find

ε = 1

16
[−(2n + 1)+ √

1 + 4γ ]2 + a

2
+ a2

[−2n + 1)+ √
1 + 4γ ]2

(79)

The corresponding wave functions can be written from Eqs. (2) and (4b) as

ψ = s
√
ε(1 − s)−

√
ε−a P(2

√
ε,−2

√
ε−a)

n (1 − 2s). (80)

Case 9: The Pöschl–Teller Potential

The Pöschl–Teller potential [61–66] is given by

V (x) = −4V0
exp(−2ax)

[1 + exp(−2ax)]2 . (81)

and the SE takes the form

d2ψ

ds2 + (1 − ηs)

s(1 − ηs)

dψ

ds
+ 1

[s(1 − ηs)]2

[
−�1s2 +�2s −�3

]
ψ = 0 (82)

where �1 = −ε2q2, �2 = 2ε2q − β2, �3 = ε2, ε2 = 2ma2

h̄2 E
By using Eqs.(1), (4b), (2), (7), and (9) we find

c1 = 1, c2 = −η, c = −η, q0 = ε, p0 = −1

2

⎛
⎝1 +

√
1 + 4

β2

η

⎞
⎠ . (83)

and

α = 2ε, β = 2

√
1 + 4

β2

η
. (84)

We write Eq. (13) as x2 − 2x + n2 − ε2 = 0 where x = p0 − q0. Choose the root
x = n + ε and replace this in the definition as

n + ε = −1

2

⎛
⎝1 +

√
1 + 4

β2

η

⎞
⎠ − ε . (85)
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Thus we get the following energy values and the wave functions

ε=−1

4

⎛
⎝2n + 1 +

√
1 + 4

β2

η

⎞
⎠ , ψ=(1−qs)

1
2

(
1+

√
1+4 β

2
η

)

s2εP

(
2ε, 2

√
1+4 β2

η

)

n ,

(86)

4 Conclusions

We can conclude by saying that, for several physical potentials the Schrödinger can
be transformed into a second order differential equation of a certain form. We have
shown that differential equations of that form can be solved analytically. Starting from
the parametric form of the differential equation we have developed a formulation for
the possible physically acceptable solutions. To show that the present method is an
efficient and practical method we have applied it to several potentials.

Appendix

The polynomial method is a useful method for the solution of the Schrodinger equa-
tion. A power series expansion of the wave function is inserted into the wave equation
and the coefficients are determined. We want to apply this method to Eq. (4a). Let us
write that equation again

(
1 − z2

)2 d2 y

dz2 +
(

1 − z2
)

[β − α + (α + β + 2)z]
dy

dz
+ R(z)y = 0. (A1)

In this equation if z is set equal to one all the terms except the last one vanish. Since
yis assumed to be nonzero at this point, it follows that R must vanish. That means
r1 +r2 +r3 = 0 must be satisfied. A similar analysis at z = −1 gives r1 −r2 +r3 = 0.
Combining these two equations we get r2 = 0 and r1 = −r3. Since we have two
arbitrary constants in our formalism it may be possible to satisfy these restrictions.
Inserting these into Eq. (4a) we obtain

(
1 − z2

) d2 y

dz2 + [β − α + (α + β + 2)z]
dy

dz
+ r3 y = 0. (A2)

Let us represent y as
∑
ν aνzν and insert this into Eq. (A2). Since the right hand-

side of the equation is zero the coefficients each power of z most vanish. When we
consider the coefficient of zν for large enough values of ν, we get an asymptotic
relation aν+1/aν ∼= 1. Hence this infinite series will not lead to an acceptable wave
function when inserted into Eq. (2). Thus the series must break off after a finite num-
ber of terms. If we assume that it breaks off at ν = n then the solution will be
represented as

∑n
ν aνzν . Inserting this into Eq. (A2) we find the coefficient of zn as
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[−n(n − 1) − (α + β + 2)n + r3]an . Since the coefficient of zn must vanish and an

is not zero we obtain r3 = n(n + α + β + 1).
For the c3 = 0 case we try the same method for Eq. (17). Using γ3 = 0 in Eq. (17)

we write that equation as

z
d2 y1

dz2 + (k + 1 − z)
dy1

dz
+ (γ1z + γ2)y1 = 0. (A3)

Representing y1 as
∑
ν aνzν and inserting it into Eq. (A3) we found that for large

values of ν the coefficients will have an asymptotic relation aν+1/aν ∼= 1/ν. We note
that the successive coefficients in the expansion of ez have this asymptotic behavior.
So the asymptotic behavior of y1 can be written as exp(z) or exp[(2p1 − c2)s]. This
will be multiplied by the factor exp(−p1s) in Eq. (15). Thus the wave function will
have a factor exp[(p1 − c2)s] and p1 − c2 is positive. This can be seen from Eq. (23).
Therefore the series must break off. When we replace y1 by

∑n
ν aνzν in Eq. (A3) it

gives the following equation

zn+1(γ1an)+ zn(−nan + γ2an)+ zn−1(. . .)+ · · · = 0 (A4)

From this we obtain γ1 = 0 and γ2 = n. These values are used in the text.
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